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Abstract
We study the pressure and temperature dependences of the dielectric relaxation
of two molecular glass-forming liquids, dibutyl phthalate and m-toluidine. We
focus on two characteristics of the slowing down of relaxation, the fragility
associated with the temperature dependence and the stretching characterizing
the relaxation function. We combine our data with data from the literature to
revisit the proposed correlation between these two quantities. We do this in light
of constraints that we suggest to put on the search for empirical correlations
among properties of glass-formers. In particular, we argue that a meaningful
correlation is to be looked for between stretching and isochoric fragility, as both
seem to be constant under isochronic conditions and thereby reflect the intrinsic
effect of temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the goal of better understanding the physics of glasses and of glass formation,
there has been a continuing search for empirical correlations among various aspects of
the phenomenology of glass-formers. The most distinctive feature of glass formation
being the rapid increase with decreasing temperature of the viscosity and relaxation times,
correlations have essentially been looked for between the characteristics of the latter and other
thermodynamic or dynamic quantities. Angell coined the term ‘fragility’ to describe the non-
Arrhenius temperature dependence of the viscosity or (alpha) relaxation time and the associated
change of slope on an Arrhenius plot [1]. He noticed the correlation between fragility and
amplitude of the heat-capacity jump at the glass transition. Earlier, the Adam–Gibbs approach
was a way to rationalize the correlation between the viscosity increase and the configurational
or excess entropy decrease as one lowers the temperature [2]. Since then, a large number of
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empirical correlations between ‘fragility’ and other properties of the liquid or of the glass have
been found: for instance, larger fragility (i.e., stronger deviation from Arrhenius behaviour) has
been associated with (i) a stronger deviation of the relaxation functions from an exponential
dependence on time (a more important ‘stretching’) [3], (ii) a lower relative intensity of the
boson peak [4], (iii) a larger mean square displacement at Tg [5], (iv) a smaller ratio of elastic
to inelastic signal in the x-ray Brillouin-spectra [6], (v) a larger Poisson ratio [7] and (vi) a
stronger temperature dependence of the elastic shear modulus, G∞, in the viscous liquid [8].

Useful as they may be to put constraints on proposed models and theories of the glass
transition, such correlations can also be misleading by suggesting causality relations where
there are no such things. It seems therefore important to assess the robustness of empirically
established correlations. In this respect, we would like to emphasize a number of points that
are most often overlooked.

(1) Fragility involves a variation with temperature that a priori depends on the thermodynamic
path chosen, namely constant pressure (isobaric) versus constant density (isochoric)
conditions. On the other hand, many quantities that have been correlated to fragility only
depend on the thermodynamic state at which they are considered: this is not the case for
the variation of the excess entropy or of the shear modulus, or for the jump in heat capacity
measured in differential scanning calorimetry, which are all path dependent, but the other
properties are measured either at Tg, the glass-transition temperature, or in the glass, where
they also relate to properties of the liquid as it falls out of equilibrium at Tg (there may be
a residual path dependence due to the nonequilibrium nature of the glass, but it is quite
different from that occurring in the liquid). Which fragility then, isobaric or isochoric,
should best be used in searching for correlations?

(2) The quantities entering the proposed correlations are virtually always considered at Tg.
This is the case for the commonly used measure of fragility, the ‘steepness index’, which
is defined as the slope of the temperature dependence of the alpha-relaxation time on an
Arrhenius plot with T scaled by Tg [9]. Tg is of course only operationally defined as the
point at which the alpha-relaxation time (or the viscosity) reaches a given value, say 100 s
for dielectric relaxation. The correlated properties are thus considered at a given relaxation
time or viscosity. What is the fate of the proposed correlations when one studies a different
value of the relaxation time?

(3) Almost invariably, comparisons involve properties measured at atmospheric pressure,
for which the largest number of data are available. Since, as discussed in the
preceding point, the properties are also considered at a given relaxation time, an
obvious generalization consists in studying the validity of the reported correlations under
‘isochronic’ (i.e. constant relaxation time) conditions, by varying the control parameters
such that the relaxation time stays constant. How robust then are the correlations when
one varies, say, the pressure along an isochrone? In light of the above, our contention is
that any putative correlation between fragility and another property should be tested, as far
as possible, by varying the reference relaxation time, by varying the thermodynamic state
along a given isochrone, and by changing the thermodynamic path along which variations,
such as that defining the fragility, are measured.

A better solution would certainly be to correlate ‘intrinsic’ properties of glass-formers
that do not depend on the chosen state point or relaxation time. A step toward defining such
an ‘intrinsic’ fragility was made when it was realized that the temperature and the density
dependences of the alpha-relaxation time and viscosity of a given liquid could be reduced to
the dependence on a single scaling variable, X = e(ρ)/T , with e(ρ) an effective activation
energy characteristic of the high-temperature liquid [10, 11]. Evidence is merely empirical
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and is supported by the work of several groups for a variety of glass-forming liquids and
polymers [10–16]. The direct consequence of this finding is that the fragility of a liquid defined
along an isochoric path is independent of density: the isochoric fragility is thus an intrinsic
property, in contrast to the isobaric fragility. Although one could devise ways to characterize the
isochoric fragility in a truly intrinsic manner, independently of the relaxation time, the common
measure through the steepness index (see above) still depends on the chosen isochrone. In
looking for meaningful correlations to this isochoric steepness index, it is clear however
that one should discard quantities that vary with pressure (or equivalently with temperature)
under isochronic conditions. As we further elaborate in this paper, the stretching parameter
characterizing the shape of the relaxation function (or spectrum) is a priori a valid candidate,
as there is some experimental evidence that it does not vary with pressure along isochrones [17].

The aim of the present work is to use the knowledge about pressure and temperature
dependences of the liquid dynamics to test the robustness of proposed correlations between
fragility and other properties. This is a continuation of the work presented in [18], where the
focus was mainly on correlations between fragility of the liquid and properties of the associated
glass. In this paper we specifically consider the correlation between fragility and stretching.
The reported correlation between the two is indeed one of the bases of the common belief that
both fragility and stretching are signatures of the cooperativity of the liquid dynamics.

We present new dielectric spectroscopy data on the pressure dependence of the alpha
relaxation of two molecular glass-forming liquids. We focus on two systems which are
well known in the field of the glass transition phenomenology: dibutyl phthalate (DBP)
and m-toluidine; they are representative of a large set of molecular glass-forming liquids
by their respective intermolecular interactions, and their dipole moments (2.4 and 1.43 D
respectively) allow accurate dielectric measurements. DBP can be considered as a model van
der Waals liquid, with the advantage of resisting crystallization under pressure, and m-toluidine
possesses an additional feature related to its ability to form H-bonds and H-bonded induced
clusters [19, 20].

We express the alpha-relaxation time as a function of the scaling variable X = e(ρ)/T
and evaluate the density dependence of e(ρ) as well as the isochoric fragility. We also study
the spectral shape and its pressure dependence along isochronic lines. We spend some time
discussing the methodological aspects of the evaluation of the fragility and of the stretching
from experimental data, as well as that of the conversion from P, T to P, ρ data. This provides
an estimate of the error bars that one should consider when studying correlations. Finally, by
combining our data with literature data we discuss the robustness of the correlation between
fragility and stretching along the lines sketched above.

The paper is structured as follows. Section 2 introduces some concepts and earlier
developments that are central for the discussion. In section 3 we present the experimental
technique. Section 4 is devoted to the pressure, temperature, and density dependence of the
relaxation time. In section 5 we analyse the spectral shape and its pressure and temperature
dependence. Finally, in section 6 we combine the current results with literature data to assess
the relation between fragility and stretching, stressing the need to disentangle temperature and
density effects. Appendices A and B discuss some methodological points.

2. Background

2.1. Isochoric and isobaric fragilities

The fragility is a measure of how much the temperature dependence of the alpha-relaxation time
(or alternatively the shear viscosity) deviates from an Arrhenius form as the liquid approaches
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the glass transition. The most commonly used criterion is the so called steepness index,

mP = ∂ log10(τα)

∂Tg/T

∣
∣
∣
∣
P

(T = Tg), (1)

where the derivative is evaluated at Tg and τα is expressed in seconds. Conventionally, the
liquid is referred to as strong if m is small, that is 17–30, and fragile if m is large, meaning
roughly above 60. In the original classification of fragility it was implicitly assumed that
the relaxation time (or viscosity) was monitored at constant (atmospheric) pressure, as this
is how the vast majority of experiments are performed. The conventional fragility is therefore
the (atmospheric pressure) isobaric fragility, and, as indicated in equation (1), the associated
steepness index is evaluated at constant pressure. However, the relaxation time can also be
measured as a function of temperature along other isobars, and this will generally lead to a
change in mP. Moreover, it is possible to define an isochoric fragility and the associated index,
mρ , obtained by taking the derivative at constant volume rather than at constant pressure. The
two fragilities are straightforwardly related via the chain rule of differentiation,

mP = mρ + ∂ log10(τα)

∂ρ

∣
∣
∣
∣
T

∂ρ

∂ Tg/T

∣
∣
∣
∣
P

(T = Tg),

when both are evaluated at the same point (Tg(P), ρ(P, Tg(P))). The isochoric fragility,
mρ , describes the intrinsic effect of temperature, while the second term on the right-hand
side incorporates the effect due to the change of density driven by temperature under isobaric
conditions. It can be shown that the above relation can be rewritten as

mP = mρ(1 − αP/ατ ) (2)

where the unconventional ατ is the isochronic expansivity [21], i.e., the expansivity along a line
of constant alpha-relaxation time τα (the Tg line being a specific isochrone). The above result
is purely formal and contains no assumptions. The implication of the result is that mP is larger
than mρ if αP > 0 and ατ < 0. It is well known that αP > 0 in general. The fact that ατ is
negative arises from the empirical result that the liquid volume always decreases when heating
while following an isochrone.

Within the last decade a substantial number of relaxation-time and viscosity data have been
collected at different temperatures and pressures/densities. On the basis of the existing data,
it is reasonably well established that the temperature and density dependences of the alpha-
relaxation time can be expressed in a scaling form as [10–16].

τα(ρ, T ) = F

(
e(ρ)

T

)

. (3)

It is seen directly from equation (3) that X (ρ, T ) = e(ρ)/T , when evaluated at Tg, has
the same value at all densities (Xg = e(ρ)/Tg(ρ)) if Tg(ρ) is defined as the temperature where
the relaxation time has a given value (e.g., τα = 100 s). Exploiting this fact, it is easy to
show [11, 22] that the scaling law implies that the isochoric fragility is independent of density.
For instance, the isochoric steepness index, when evaluated at a Tg corresponding to a fixed
relaxation time, is given by

mρ = d log10(τα)

dTg/T

∣
∣
∣
∣
ρ

(T = Tg) = F ′(Xg)
dX

dTg/T
(T = Tg) = Xg F ′(Xg). (4)

The fact that the relaxation time τα is constant when X is constant means that the isochronic
expansion coefficient ατ is equal to the expansion coefficient at constant X . Using this and the
general result (

∂ρ

∂T )X ( ∂ X
∂ρ

)T ( ∂T
∂ X )ρ = −1, it follows that

1

ατ

= −Tg
d log e(ρ)

d log ρ
, (5)
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which inserted in equation (2) leads to

mP = mρ

(

1 + αPTg
d log e(ρ)

d log ρ

)

, (6)

where mP, mρ and αP are evaluated at Tg.
When liquids have different isobaric fragilities, it can be thought of as due to two reasons: a

difference in the intrinsic isochoric fragility, mρ , or a difference in the relative effect of density,
characterized by αPTg and the parameter x = d log e(ρ)

d log ρ
. We analyse the data in this frame.

2.2. Relaxation-time dependent fragility

The following considerations hold for isochoric and isobaric conditions alike. The ρ or P
subscript is therefore omitted in this section.

The fragility is usually characterized by a criterion evaluated at Tg, i.e. the temperature at
which the relaxation time reaches τα = 100–1000 s. The same criterion, e.g. the steepness
index, can however equally well be evaluated at a temperature corresponding to another
relaxation time, and this is also found more often in the literature, mainly to avoid the
extrapolation to long times. So defined, the ‘fragility’ for a given system can be considered
as a quantity which is dependent on the relaxation time at which it is evaluated:

m(τ ) = d log10(τα)

dTτ /T
(T = Tτ ) (7)

where τα(Tτ ) = τ defines the temperature Tτ . (Tg is a special case with τ ≈ 100–1000 s.)
An (extreme) strong system is a system for which the relaxation time has an Arrhenius

behaviour,

τα(T ) = τ∞ exp

(
E∞
T

)

, (8)

where E∞ is a temperature and density independent activation energy (measured in units of
temperature). Inserting this in the expression for the relaxation-time dependent steepness index
(equation (7)) gives

mstrong(τ ) = log10 (τ/τ∞) (9)

which gives the value mstrong(τ = 100 s) = 15 (assuming log10(τ∞/s) = −13) and decreases
to mstrong(τ = τ∞) = 0 as the relaxation time is decreased. This means that even for a strong
system the steepness index is relaxation-time dependent. In order to get a proper measure of
departure from Arrhenius behaviour it could therefore be more adequate to use the steepness
index normalized by that of a strong system:

mn(τ ) = m(τ )

mstrong(τ )
=

d log10(τα)

dTτ /T

log10 (τ/τ∞)
. (10)

mn(τ ) will take the value 1 at all relaxation times in a system where the relaxation time
has an Arrhenius behaviour. Such a normalized measure of fragility has been suggested
before [23–25]. For instance, Olsen and co-workers [25] have introduced the index

I = −d log E(T )

d log T
(11)

where E(T ) is a temperature dependent activation energy defined by E(T ) = T ln (τα/τ∞).
The relation between the steepness index and the Olsen index is [25]
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I (τ ) = m(τ )

log10

(
τ

τ∞

) − 1 = mn(τ ) − 1. (12)

I (τ ) takes the value of zero for strong systems at all relaxation times. Typical glass
forming liquids display an approximate Arrhenius behaviour at high temperatures and short
relaxation times; in this limit I (τ ) = 0 and it increases as the temperature dependence starts
departing from the Arrhenius behaviour. Typical values of I at Tg(τ = 100 s) range from
I = 3 to 8, corresponding to steepness indices of m = 47–127.

Finally, we note in passing that relaxation-time independent measures of fragility can be
formulated through fitting formulae: this is the case for instance of the fragility parameter
D in the Vogel–Tammann–Fulcher (VTF) formula or of the frustration parameter B in the
frustration-limited domain theory [26].

3. Experiments

The dielectric cell is composed of two gold-coated electrodes separated by small Teflon spacers.
The distance between the spacers is 0.3 mm and the area is 5.44 cm2, giving an empty
capacitance of 16 pF. The electrodes are totally immersed in the liquid sample, which is sealed
from the outside by a Teflon cell. The electric contacts are pinched through the Teflon. The
compression is performed using liquid pentane, which surrounds the Teflon cell from all sides.
The Teflon cell has one end with a thickness of 0.5 mm in order to insure that the pressure is
well transmitted from the pentane to the liquid sample. The pressure is measured by using a
strain gauge. The cooling is performed by a flow of thermostatted cooling liquid running inside
the autoclave. The temperature and the temperature stability are monitored by two PT100
sensors placed 2 and 0.3 cm from the sample. The temperature is held stable within ±0.1 ◦C
for a given isotherm. The temperature during the time it takes to record a spectrum is stable
within ±0.01 ◦C.

The set-up insures a hydrostatic pressure because the sample is compressed from all sides.
It is moreover possible to take spectra both under compression and decompression. By doing
so and returning to the same P–T conditions after several different thermodynamic paths we
have verified that there was no hysteresis in the pressure dependence of the dynamics. This
serves to confirm that the liquid is kept at thermodynamic equilibrium at all stages.

The capacitance was measured using an HP 4284A LC R meter, which covers the
frequency range from 100 Hz to 1 MHz. The low-frequency range from 100 to 1 Hz was
covered using an SR830 lock-in.

The samples, dibutyl phthalate (DBP) and m-toluidine, were acquired from Sigma-
Aldrich. The m-toluidine was twice distilled before usage. The DBP was used as acquired.

Liquid m-toluidine was measured on one isotherm at 216.4 K. DBP was measured along
four different isotherms, 205.5, 219.3, 236.3 and 253.9 K, at pressures up to 400 MPa. DBP
was moreover measured at different temperatures along two isobars: atmospheric pressure and
230 MPa. The pressure was continuously adjusted in order to compensate for the decrease
of pressure which follows from the contraction of the sample due to decreasing temperature.
It is of course always possible to reconstruct isobars based on experiments performed under
isotherm conditions. However, such a procedure mostly involves interpolation of the data,
which is avoided by performing a strictly isobaric measurement. For DBP we have obtained
relaxation-time data at times shorter than 10−6.5 s by using the high-frequency part of the
spectrum and assuming time–temperature and time–pressure superposition (TTPS). Although
TTPS is not followed to a high precision (see section 5.1), the discrepancies lead to no
significant error on the determination of the relaxation time. This is verified by comparison
to atmospheric-pressure data from the literature (see figure 1).
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2 3 4 5 6
1000/T
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This work
Nielsen
Dixon 90
Sekula 04
230 MPa this work
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Figure 1. Temperature dependence of the alpha-relaxation time (from dielectric measurements,
τα = 1/ωpeak) of liquid DBP at atmospheric pressure and at 230 MPa (Arrhenius plot). Data at
atmospheric pressure from other groups are also included: unpublished data from Nielsen [35], the
VTF fit of [27] shown in the range where it can be considered as an interpolation of the original
data, and data taken from figure 2(a) in [29].

4. Alpha-relaxation time and fragility

4.1. Dibutyl phthalate

The DBP data at atmospheric pressure are shown in figure 1 along with literature results.
Tg(Patm) = 177 K, when defined as the temperature at which τα = 100 s. We also present
the data taken at P = 230 MPa in this figure. It is clearly seen that Tg increases with pressure.
An extrapolation of the data to τα = 100 s gives Tg = 200 K for P = 230 MPa, corresponding
to dTg/dP ≈ 0.1 K MPa−1. This corresponds well to the pressure dependence of Tg (at
τα = 1 s) reported by Sekula et al [27], based on measurements made at pressures higher
than 600 MPa. The dependence is however stronger than that reported by Fujimori et al [28]
based on isothermal calorimetry, for which dTg/dP = 0.06 K MPa−1. This indicates that
the calorimetric and the dielectric relaxations may have somewhat different dependences on
pressure.

In figure 2 we illustrate the determination of Tg and of the steepness index mP for the
atmospheric-pressure data, using the part of the data of figure 1 with a relaxation time longer
than a millisecond. Along with the data we show the VTF fit from Sekula et al [27] extrapolated
to low temperatures, which gives Tg = 177.4 K and mP = 84. We have also performed a new
VTF fit restricted to the data in the 10−6–102 s region. The result of this fit yields Tg = 176.6 K
and mP = 82. Finally, we have made a simple linear estimate of log10 τα as a function of 1/T
in the temperature range shown in the figure. This linear slope fits the data close to Tg better
than any of the VTF fits. The corresponding glass transition temperature and steepness index
are Tg = 176 K and mP = 70. This illustrates that the determination of Tg is rather robust,
while this is less so for the steepness index. This latter depends on how it is obtained, and
the use of extrapolated VTF fits can lead to an overestimation. (Of course, a VTF fit made
over a very narrow range, e.g. 10−2–102 s, will agree with the linear fit, because it becomes
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Figure 2. Atmospheric-pressure data of figure 1 with relaxation times longer than a millisecond
(symbols). Also shown are the VTF fit from [27] extrapolated to low temperatures (dashed–dotted
line), a new VTF fit made by using displayed data in the 10−6 s −102 region (dashed line), and the
estimated slope of the data in the long-time region (full line). The Tg values estimated from these
three methods are very similar, whereas the fragility varies significantly from m = 65 to 85.
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Figure 3. Alpha-relaxation time of DBP (from dielectric measurements, τα = 1/ωpeak) as a
function of pressure along four different isotherms (log–linear plot).

essentially linear over the restricted range.) The fragility of DBP has earlier been reported to
be mP = 69 [3], based on the data of Dixon et al [29]. We take mP = 75 as a representative
value.

The relaxation-time data along four different isotherms are displayed as a function of
pressure in figure 3.

In order to separate the relative effects of density and temperature it is convenient to
express the relaxation time as a function of density and temperature rather than pressure and
temperature. To do this, we need the pressure and temperature dependences of the density.
However, for liquid DBP such data is only available at high temperature [30].
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1 1.1 1.2 1.3 1.4

ρ [g/cm3]
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Sekula 04
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Cook 93 295.5K
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Figure 4. Logarithm of the alpha-relaxation time of DBP versus density (see the text regarding the
calculation of density). Included are data from this work along with dielectric data of Paluch from
figure 3 in [33], and viscosity data from Cook [31]. The viscosity data are shifted arbitrarily on
the logarithmic scale in order to make the absolute values correspond to the dielectric data of [33],
which are taken at the same temperature.

In order to extrapolate the equation of state to low temperature we have applied the
following scheme. When calculated from the data in [30], the expansion coefficient αP shows
a weak decrease with decreasing temperature. We therefore assume that the temperature
dependence of αP is linear over the whole temperature range and integrate with respect
to temperature to obtain the density along the atmospheric-pressure isobar. In the whole
temperature range of [30], the pressure dependence of the density is well described by fits to
the Tait equation with temperature-dependent adjustable parameters ‘c’ and ‘b’ [31] (which are
directly related to the compressibility and its first-order pressure derivative). We have linearly
extrapolated the temperature dependence of these parameters and used the Tait equation to
calculate the pressure dependence along each isotherm. Extrapolating the derivatives rather
than the density itself is expected to lead to smaller errors on the latter. In addition, we have
checked that this procedure gives physically reasonable pressure and temperature dependences
of the expansivity and of the compressibility [32].

Figure 4 shows the density dependence of the alpha-relaxation time along the four different
isotherms, the atmospheric-pressure isobar and the 230 MPa isobar. We have also included the
room-temperature dielectric data of Paluch et al [33]. For DBP the viscosity data and the
dielectric relaxation time do not decouple under pressure [27], and we have therefore also
included the room-temperature viscosity data of Cook et al [33].

In figure 5 we show the data of figure 4 plotted as a function of the scaling variable ρx/T ,
choosing for x the value that gives the best collapse for the data of this work. This corresponds
to testing the scaling in equation (3) by assuming that e(ρ) is a power law. The data taken at
low density collapse quite well with x = 2.5, while this is not true for the data of Paluch [33]
taken at densities higher than approximately 1.2 g cm−3. It is possible to make all the data
collapse by allowing e(ρ) to have a stronger density dependence at higher densities. In figure 6
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Figure 5. The alpha-relaxation times shown in figure 4 plotted as a function of ρ2.5/T .

we show the data as a function of e(ρ)/T , where we have constructed the density dependence
of e(ρ) in order to get a good overlap of all the data (we did not look for the best collapse,
but merely evaluated the change of the isochronic expansivity: see section 2). The resulting
density dependence of e(ρ) is shown in figure 6 along with the ρ2.5 power law. Note that the
quality of the data collapse depends only on the density dependence of e(ρ), not on its absolute
value. The constructed e(ρ) has an apparent ‘power-law’ exponent x(ρ) = d log e(ρ)/d log ρ

that increases from 1.5 to 3.5 with density in the range considered. In any case, the absence
of collapse in figure 5 cannot be explained by errors in estimating the PV T data: this is
discussed in more detail in appendix A. In another recent paper [34] it is reported that DBP has
a constant power-law exponent of 3.2. However, the PV T -data used in this paper do not agree
at all with the data known in the literature (either absolute value or pressure and temperature
dependences).

As a last note regarding the e(ρ)/T scaling in figure 6, we want to stress that we cannot
test the scaling (equation (3)) in the density range above 1.25 g cm−3, where there is only one
set of data. (This is why we did not attempt to fine tune e(ρ) to find the best collapse; see
above.) Indeed, with a unique set of data in a given range of density it is always possible to
construct e(ρ) in this range to make the data overlap with data taken in other density ranges.

We have determined the ratio between the isochoric fragility and the isobaric fragility
at atmospheric pressure by calculating ατ along the isochrone of 100 s and inserting it in
equation (2). This leads to mP/mρ ≈ 1.2. In figure 7 we show the isobaric data taken at
atmospheric pressure and at 230 MPa scaled by their respective Tg(P). No significant pressure
dependence of the isobaric fragility is observed when going from atmospheric pressure to
230 MPa, which is consistent with the result of reference [27]. The pressure independence
of mP is connected to the relatively low value of mP/mρ = 1.2 (typical values are 1.1–2 [11]);
mρ is pressure independent and the ratio mP/mρ cannot be lower than one (see equation (2)),
so that mP can at most decrease by 20% from its atmospheric-pressure value. Moreover, the
increase in d ln(e(ρ))

ln ρ
with density will tend to cancel the decrease in αPTg, which is usually

responsible for the decrease in fragility with increasing pressure.
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Figure 6. (a) The alpha-relaxation times shown in figure 4 plotted as a function of X = e(ρ)/T ,
with increasing d log e(ρ)/d log ρ as ρ increases. (b) Density-dependent activation energy e(ρ)

(dashed line) used in the scaling variable X = e(ρ)/T for collapsing data in (a) (the associated
x(ρ) = d log e(ρ)/d log ρ increases from 1.5 to 3.5 in the density range under study). We also
display the power law giving the best scaling, ρ2.5, at low density (full line).

4.2. m-toluidine

The glass transition temperature at atmospheric pressure is Tg = 187 K (for τα = 100 s) and the
isobaric fragility based on dielectric spectra is reported to be mP = 82 ± 3 [36, 37]. (There has
been some controversy about the dielectric relaxation in m-toluidine; see [36] and references
therein.)

In the inset of figure 8 we show the pressure-dependent relaxation time at 216.4 K.
Extrapolating the data to τα = 100 s leads to Pg = 340 ± 10 MPa, corresponding to
dTg/dP = 0.085 K MPa−1. This value is, as we also saw in the case of DBP, about a factor
of two higher than the dTg/dP = 0.045 K MPa−1 reported for the calorimetric glass transition
by [38]. This could suggest that this type of decoupling is general; however, there are also
examples where no such decoupling is found [39].

As for DBP, we wish to convert the temperature and pressure dependences of the relaxation
time to the temperature and density dependences. Density data are available along four
isotherms in the 278.4–305.4 K range for pressures up to 300 MPa [40]. Tait fits and thermal
expansivity in this range were extrapolated by using the scheme described above for DBP in
order to determine density both as a function of temperature down to Tg and as a function of
pressure on the 216.4 K isotherm. In figure 8 we show the alpha-relaxation time as a function
of density. The data taken at atmospheric pressure and the data taken along the 216.4 K
isotherm cover two different ranges in density. It is therefore not possible from these data
to verify the validity of the scaling in X = e(ρ)/T . We therefore assume that the scaling
is possible. Moreover, due to the paucity of the data we describe e(ρ) by a simple power
law, e(ρ) = ρx . We find the exponent x by exploiting the fact that the scaling variable
X = e(ρ)/T is uniquely fixed by the value of the relaxation time; applying this at Tg, namely
setting Xg(Patm) = Xg(216 K), leads to x = 2.3 and gives a ratio of mP/mρ = 1.2.
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Figure 7. Arrhenius plot of the alpha-relaxation time of DBP at atmospheric pressure and at
230 MPa, when the temperature is scaled with the pressure dependent Tg, Tg(Patm) = 176 K
and Tg(230 MPa) = 200 K. As in figure 1, data from other groups are also included: unpublished
data from Nielsen [35], the VTF fit of [27], shown in the range where it can be considered as an
interpolation of the original data, and data taken from figure 2(a) in [29].
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Figure 8. Logarithm of the alpha-relaxation time of m-toluidine as a function of density along the
isotherm T = 216.4 K (symbols). The VTF fit of the atmospheric-pressure data of Mandanici et al
[36] is also shown in the range where the fit can be considered as an interpolation of the data (dashed
line). The inset shows the alpha-relaxation time of m-toluidine as a function of pressure along the
isotherm T = 216.4 K.

5. Spectral shape and stretching

The shape of the relaxation function (or spectrum), most specifically its distinctly
nonexponential (or non-Debye) character in the viscous regime, is taken as one of the important
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Figure 9. Log–log plot of the frequency-dependent dielectric loss of DBP. The curves can be sorted
into four groups, each group having roughly the same peak frequency: (i) dashed–dotted (red)
curve, T = 253.9 K, P = 320 MPa; black dots, T = 236.3 K, from right to left P = 153 MPa,
P = 251 MPa, P = 389 MPa; full (blue) line, T = 219.3 K, from right to left P = 0 MPa,
P = 108 MPa, P = 200 MPa, P = 392 MPa; dashed (magenta) curve, T = 206 K, from right to
left P = 0 MPa, P = 85 MPa, P = 206 MPa.

features of glass-forming materials. Characterizing and quantifying this effect is however not
fully straightforward and has led to diverging interpretations. First of all, the shape of the
relaxation function or spectrum may change with the experimental probe considered. Even
when restricting comparison to a single probe, here dielectric relaxation, there is no consensus
on how to best characterize the shape. We discuss in appendix B various procedures that are
commonly used and we test their validity on one representative spectrum. For reasons detailed
in that appendix, we focus in the following on the Cole–Davidson fitting form.

5.1. Dibutyl phthalate

The frequency-dependent dielectric loss for a selected set of different pressures and
temperatures is shown in figure 9. The first observation is that cooling and compressing
have a similar effect as both slow down the alpha relaxation and separate the alpha relaxation
from higher-frequency beta processes. The data displayed are chosen so that different
combinations of temperature and pressure give almost the same relaxation times. However,
the correspondence is not perfect. In figure 10 we have thus slightly shifted the data, by at most
0.2 decade, in order to make the peak positions overlap precisely. This allows us to compare
the spectral shapes directly. It can be seen from the figure that the shape of the alpha peak
itself is independent of pressure and temperature for a given value of the alpha-relaxation time
(i.e. of the frequency of the peak maximum), while this is not true for the high-frequency part of
the spectra, which is strongly influenced by the beta-relaxation peak (or high-frequency wing).
When comparing datasets that have the same alpha-relaxation time, one finds that the high-
frequency intensity is higher for the pressure–temperature combination corresponding to high
pressure and high temperature.

In figure 11 we show all the datasets of figure 9 superimposed and we zoom in on the region
of the peak maximum. The overall shape of the alpha relaxation is very similar at all pressures
and temperatures. However, looking at the data in more detail, one finds a significantly larger
degree of collapse between spectra which have the same relaxation time, whereas a small
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Figure 10. Same dielectric loss data of DBP as in figure 9 with a slight shift of the peak frequencies
(less than 0.2 decade) to make the data taken under quasi-isochronic conditions precisely coincide.
The symbols are the same as in figure 9, but the data at T = 206 K and P = 206 MPa and
T = 219.3 K and P = 392 MPa are not shown.
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Figure 11. The same dielectric-loss data as in figures 9 and 10, with the frequency and intensity
now scaled by the values at the maximum. We show only 1.5 decades in frequency in order to
magnify the details. Notice a small broadening as the characteristic relaxation time increases.
Dashed–dotted (blue) lines are three different data sets with log10 νmax ≈ 2.6 (P = 320 MPa,
T = 253.9 K; P = 153 MPa, T = 236.3 K, and P = 0 MPa, T = 219.3 K). Full (red) lines are
three data sets with log10 νmax ≈ 4.1 (P = 251 MPa, T = 236.3 K; P = 108 MPa, T = 219.3 K,
and P = 0 MPa, T = 205.6 K). Dashed (green) lines are three data sets with log10 νmax ≈ 5.2
(P = 339 MPa, T = 236.3 K; P = 200 MPa, T = 219.3 K, and P = 85 MPa, T = 205.6 K).

broadening of the alpha peak is visible as the relaxation time is increased. At long relaxation
times there is a perfect overlap of the alpha-relaxation peaks which have the same relaxation
time. At shorter relaxation time, log10(ωmax) ≈ 5, the collapse is not as good: the peak gets
slightly broader when pressure and temperature are increased along the isochrone. In all cases,
the alpha peak is well described by a Cole–Davidson (CD) shape. The βCD goes from 0.49 to
0.45 on the isochrone with the shortest relaxation time and decreases to about 0.44 close to Tg

at all pressures. On the other hand, a Kohlrausch–William–Watts (KWW) fit close to Tg gives
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(a) –2 –1 0 1 2 3 4
log

10
ν–log

10
ν

max

lo
g 10

Im
(ε

)–
lo

g
10

Im
(ε

m
ax

)

(b) –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
log

10
ν–log

10
ν

max

lo
g 10

Im
(ε

)–
lo

g
10

Im
(ε

m
ax

)

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

Figure 13. Same dielectric-loss data as in figure 12, now with the intensity and the frequency
scaled by the values of the peak maximum. (b) A zooming in of the data in (a) to focus on the
alpha-relaxation region near the peak maximum.

βKWW = 0.65. A detailed discussion of the fitting procedures and of the relation between CD
and KWW descriptions is given in appendix B.

5.2. m-toluidine

The frequency-dependent dielectric loss of m-toluidine for several pressures along the T =
216.4 K isotherm is shown in figure 12. The data are then superimposed by scaling the intensity
and the frequency by the intensity and the frequency of the peak maximum, respectively: this
is displayed in figure 13. When zooming in (figure 13(b)) we still see almost no variation of
the peak shape. For the present set of data, pressure–time superposition is thus obeyed to a
higher degree than in DBP, and the changes are too small to give any pressure dependence
in the parameters when fitting the spectra. The Cole–Davidson fit to the m-toluidine gives
βCD = 0.42 (see also appendix B). Mandanici [36] and co-workers have reported a temperature
independent value of βCD = 0.45 for data taken at atmospheric pressure in the temperature
range 190–215 K, a value that is compatible with ours. While the alpha-relaxation peak seems
not to change in shape in the pressure range studied, it is seen that there is a change in slope at
high frequencies at high pressure. This suggests that a beta process might appear if one goes to
even higher pressures.
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6. Discussion

6.1. Correlations with fragility

As discussed in the introduction, the temperature dependence of the alpha-relaxation time (or
of the viscosity) is usually considered as the most important phenomenon to understand in
glass science. Isobaric fragility is then often used to characterize the viscous slowing down
and its measures, such as the steepness index, are then considered as fundamental parameters.
Many studies have been aimed at investigating which other properties of the liquid and of the
associated glass correlate to fragility. Such correlations have been empirically established by
comparing rather large sets of systems covering a wide spectrum of fragilities.

In the literature, the finding of a correlation between fragility and some other property
is always interpreted as indicating that the property in question is related to the effect of
temperature on the structural relaxation. However, when cooling a liquid isobarically two
effects contribute to the slowing down of the dynamics: the decrease of temperature and the
associated increase of density. Hence, the isobaric fragility is a combined measure of the two
effects. It is of course the underlying goal that the proposed correlations be used as guidelines
and tests in the development of theories and models for the glass transition. It is therefore
important to clarify whether the correlations result from, and consequently unveil information
on, the intrinsic effect of temperature on the relaxation time, the effect of density, or a balanced
combination of the two.

Equations (6) and (2) show how isobaric fragility can be decomposed into two
contributions, that of temperature being given by mρ and the relative effect of density on
relaxation time characterized by αPTg

d log e(ρ)

d log ρ
. Isobaric measurements do not give access to mρ

or to αPTg
d log e(ρ)

d log ρ
independently, but the relevant information can be obtained from data taken

under pressure, as we have shown for the data presented here. From this information it becomes
possible to revisit the correlations between fragility and other properties [18]. The underlying
idea is that a property supposed to correlate to the effect of temperature on the relaxation time
should more specifically correlate to the isochoric fragility, mρ , than to the isobaric one, mP.

As also stressed in the introduction, it is instructive to consider the evolution of
the empirically established correlations with pressure. As shown in section 2.1, mρ is
constant, i.e. is independent of density and pressure, when it is evaluated at a pressure- (or
density-) dependent Tg corresponding to a given relaxation time. Nonetheless, it follows from
equation (6) that the isobaric fragility will in general change due to the pressure dependence of
αPTg

d log e(ρ)

d log ρ
. Tg increases with pressure, αPTg(P) decreases, whereas d log e(ρ)

d log ρ
= x is often to

a good approximation constant. As a result, the pressure dependence of mP is nontrivial. DBP,
which we have studied here, shows no significant pressure dependence of the isobaric fragility,
while the general behaviour seen from the data compiled by Roland et al [13] is that the isobaric
fragility decreases or stays constant with pressure, with few exceptions. This seems to indicate
that the decrease of αPTg(P) usually dominates over the other factors.

The properties that are correlated to fragility will a priori also depend on pressure or
density. However, if a property is related to the pure effect of temperature on the relaxation
time, and therefore correlates to mρ , then it should be independent of density when evaluated
along an isochrone (usually the glass transition line Tg), as mρ itself does not depend on density.

6.2. Stretching and fragility

One of the properties that has been suggested to correlate to the fragility is the nonexponential
character of the relaxation function, usually expressed in terms of the stretching parameter
βKWW.
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Figure 14. Isobaric fragility as a function of stretching parameter. Diamonds, molecular liquids;
circles, polymers. See table 1 for numerical values and references.
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Figure 15. Isochoric fragility mρ as a function of stretching parameter. Diamonds, molecular
liquids; circles, polymers. See table 1 for numerical values and references.

The data we have reported here confirm the earlier finding [17] that the spectral shape
of the alpha relaxation does not vary when pressure is increased while keeping the relaxation
time constant. This leads us to suggest that, if a correlation between fragility and stretching
does exist, this latter should better correlate to the isochoric fragility which is also independent
of pressure than to the isobaric fragility. To test this hypothesis we have collected data from
literature reporting isobaric fragility and stretching of the relaxation at Tg. We consider here a
description of the shape of the relaxation function in terms of the KWW stretching parameter
βKWW. This choice is made because it is convenient to use a characterization with only one
parameter for the shape (see appendix B for a discussion and the connection with the Cole–
Davidson description used above) and because βKWW is the most reported of the liquids where
mρ is also available. The compilation of these data is shown in table 1 and in figures 14 and 15,
where both the isobaric fragility at atmospheric pressure (figure 14) and isochoric fragility
(figure 15) are plotted against the stretching parameter. There is a great deal of scatter in
both figures. There is however an observable trend, the fragilities appearing to decrease as the
stretching parameter increases. The relative effect of density (over that of temperature) on the
slowing down of the relaxation is characterized by the term αPTg

d log e(ρ)

d log ρ
= mP/mρ − 1. In

figure 16 we show the ratio mP/mρ as a function of βKWW. Clearly, no correlation is found
between this ratio and the stretching.

The correlation between stretching and fragility is not strikingly different in figures 14
and 15. However, both on theoretical (focusing on the intrinsic effect of temperature) and
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Figure 16. Ratio between isochoric and isobaric fragility as a function of stretching parameter.
Diamonds, molecular liquids; circles, polymers. See table 1 for numerical values and references.

Table 1. Fragilities and KWW stretching exponents of molecular liquids and polymers. The
∗ indicates that the value is not given in the corresponding reference but is calculated from the
data therein. The following abbreviations are used for the names of the liquids: PC = propylene
carbonate, BMPC = 1,1′-bis(p-methoxyphenyl)cyclohexane, BMMPC = 1,1′-di(4-methoxy-
5-methylphenyl)cyclohexane, KDE = cresolphthalein-dimethyl-ether, DEP A = diglycidylether of
bisphenol A, and DHIQ = decahydroisoquinoline.

Compound mP References mρ References βKWW References

o-terphenyl 82, 81, 76, 84 [41–44] 45 [41] 0.57, 0.52 [42, 45]
Dibutyl phthalate 75 This work 63 This work 0.56, 0.65 [29] This work
PC 104, 93, 90 [46, 47, 44] 57, 65∗ [48, 15] 0.73 [44]
BMPC 70 [49] 26 [49] 0.6 [50]
BMMPC 58 [48] 25 [48] 0.55 [51]
DEP A 95 [52] 57 [52] 0.38 [53]
KDE 64, 73, 68 [48, 44, 54] 34 [48] 0.75 [44]
DHIQ 163, 158 [55, 47] 117 [55] 0.36 [47]
Cumene 90∗ [56] 57∗ [56, 57] 0.66 [58]
Salol 68, 73, 63 [13, 44, 59] 36 [13] 0.6, 0.53 [60, 3]
Glycerol 40, 53 [41, 61] 38 [41] 0.65, 0.7, 0.75 [61, 62, 29]
Sorbitol 128 [12] 112 [12] 0.5 [63]
m-fluoroaniline 70 [37] 51∗ [15] 0.35, 0.64 [64, 65]
m-toluidine 84, 79 [36, 37] 68 This work 0.57 This work
Polyisobutylene 46 [66] 34∗ [39] 0.55 [66]
Polyvinyl chloride 160, 191 [67, 66] 140 [67] 0.25 [66]
Polyvinyl acetate 130, 95, 78 [67, 41, 13] 130, 61, 52 [67, 41, 13] 0.43 [66]
Polystyrene 77, 139 [67, 66] 55 [67] 0.35 [66]
Polymethyl acrylate 102, 122, 102 [67, 52, 66] 80, 94 [67, 52] 0.41 [66]

on phenomenological grounds (isochoric fragility and stretching do not appear to vary as
one changes pressure along an isochrone), our contention is that one should prefer using the
isochoric fragility.

In the above we have considered only fragility and stretching at the conventional glass
transition temperature, that is around τα = 100 s. However, we have pointed out in the
introduction that both the steepness index characterizing fragility and the stretching parameter
depend on the relaxation time. Although still debated, there seems to be a qualitative trend
toward a decrease of the stretching (an increase in βKWW) and of the steepness index as the
relaxation time decreases and one approaches the ‘normal’ liquid regime. It would certainly be
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very valuable to obtain more data in order to study how the correlation between fragility and
stretching evolves as a function of the relaxation time.

7. Conclusion

In this paper we have stressed the constraints that one should put on the search for (meaningful)
empirical correlations between the fragility of a glass-former, which characterizes the
temperature dependence of the slowing down, and other dynamic or thermodynamic properties.
Among such constraints is the check that the proposed correlations, often established at Tg and
at atmospheric pressure, are robust when one changes the reference relaxation time (in place of
the characteristic of Tg) as well as when one varies the pressure under isochronic conditions.
Important also is the fact that fragility depends on the thermodynamic path considered (constant
pressure versus constant density) and that, in contrast to the isobaric fragility, the isochoric
one appears as an intrinsic property of the glass-former, characterizing the pure effect of
temperature.

We have reported dielectric relaxation spectra under pressure for two molecular liquids,
m-toluidine and DBP. We have combined these data with the available thermodynamic data
and analysed the respective effect of density and temperature on the dynamics. Our results are
consistent with a general picture in which the isochoric fragility is constant on an isochrone.
The shape of the relaxation function, as e.g. expressed by the stretching parameter βKWW, has
also been found constant along isochrones.

We have finally discussed the possible correlation between fragility and stretching,
suggesting that a meaningful correlation is to be looked for between stretching and isochoric
fragility, as both seem to be constant under isochronic conditions and thereby reflect the
intrinsic effect of temperature. On the practical side, the correlation is however no stronger
with the isochoric fragility than with the isobaric one. One top of large error bars that may be
present and that we have addressed in some detail, this reflects the fact that correlations are
rather statistical in nature, emerging from a comparison of a large number of glass-formers,
rather than one-to-one correspondences between properties of the materials.
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Appendix A. Details of the density calculation

The pressure and temperature dependences of the density are of course a crucial input to the
scaling shown in section 4.1. In order to evaluate the effect of the extrapolations we have
performed, we focus on the scaling for the high-pressure room-temperature data of Paluch
on DBP [33] and the data at atmospheric pressure, because the extrapolation of the density
is smallest in these cases. The discrepancies seen in figure 5 could be accounted for if the
density at high pressure and room temperature were higher than what we have estimated or
if the density at low temperature were lower than what we have estimated. The high-density
dynamical data are taken at room temperature. The experimental density data are also taken at
room temperature and they are only extrapolated above 1.2 GPa. If the actual density is higher
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than what we have estimated, then it means that the compressibility is larger than what we
have taken. However, the compressibility at 1.2 GPa is already in the high-pressure domain,
where it is very low and almost pressure independent (it is slightly decreasing with increasing
pressure). The most conservative estimate we could make is to keep the compressibility
constant for pressures above the last experimental point at 1.2 GPa. Such an approach changes
the ratio ρ2.5/T by less than 1%, and therefore cannot account for the discrepancy seen in
figure 5. An alternative explanation would be that the actual low-temperature density is lower
than we have estimated, meaning that we have overestimated the expansion coefficient αP.
This latter has been calculated at two different high temperatures based on the data in [30].
This leads to a slight decrease in expansion coefficient with decreasing temperature. If the
expansion coefficient is to be smaller than the estimate from this temperature dependence, then
it would mean that the temperature dependence of the expansion coefficient should increase
as temperature decreases. This is the opposite of what is seen in real liquids, where αP at
atmospheric pressure tends to a constant at low temperatures [32]. It is actually most common
to assume that the αP of molecular liquids is constant below room temperature (e.g. [15]). This
type of assumption would enhance the discrepancy in figure 5. We therefore conclude that the
absence of collapse of the high-pressure data in figure 5 using a simple power law form for
e(ρ) cannot be explained by errors made in the estimating the PV T data.

Appendix B. Characterizing the spectral shape

In the following, we briefly review the procedures commonly used to characterize the shape of
the relaxation spectrum of viscous liquids and test different descriptions on one of our spectra.
We more specifically look at schemes for converting one type of description to another. This
analysis is important for the present work because we compile literature data in section 6.2
in order to look at possible general connections between relaxation shape and temperature
dependence of the relaxation time.

The (normalized) Kohlrausch–William–Watts function or stretched exponential,
φKWW(t) = exp[− (

t
τ

)βKWW], leads to a loss peak in the frequency domain that is given by
the one-side Fourier transform

φ′′
KWW(ω) =

∫ ∞

0
−dφKWW(t)

dt
sin(ωt) dt . (B.1)

The low-frequency behaviour of this function is always a power law with unit exponent.
The high-frequency behaviour is a power law with exponent −βKWW [68]. βKWW is the only
parameter describing the shape of the relaxation function. Hence it controls both the exponent
of the high-frequency power law and the width of the relaxation function.

The Havriliak–Negami (HN) function,

φHN(ω) = 1

[1 + (iωτHN)α]γ , (B.2)

gives a power law with exponent (−αγ ) in the high-frequency limit and a power law of
exponent α in the low-frequency limit of its imaginary part.

The HN function reduces to the Cole–Davidson (CD) one when α = 1. (In the case of a
CD function we follow the convention and refer to the γ above as βCD.) The CD spectrum has
the same general characteristics as the KWW one: a high-frequency power law with exponent
given by βCD and a low-frequency power law with exponent one. However, the shape of the two
functions is not the same. The CD function is narrower for a given high-frequency exponent
(given β) than the KWW function. The best overall correspondence between the CD function
and the KWW function has been determined by Lindsey and Patterson [68].
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No good correspondence exists in general between the HN and the KWW functions, first
of all because the former involves two adjustable shape parameters and the latter only one (plus
in both cases a parameter for the intensity and one for the timescale). The KWW function
always has a slope of one at low frequencies while the HN function has a generally nontrivial
α. Alvarez et al [69] numerically found that the two functions can nonetheless be put in
correspondence by fixing the relation between the two HN parameters γ = 1− 0.812(1−α)0.387

and choosing βKWW = (αγ )(1/1.23). This restricted version of the HN function is sometimes
referred to as the AAC function [70]. The shape is described by one parameter. However, it is
clear that this function cannot correspond to the KWW function in the frequency range where
the loss can be described by power laws, as also noted by Gomez and Alegria [70]. The AAC
function inherits the behaviour of the HN function; as a result it has a nontrivial exponent α at
low frequencies and an exponent −αγ at high frequencies, while the associated KWW function
has exponents one and −βKWW = −(αγ )(1/1.23) at low and high frequencies, respectively.

Another approach is to describe the dielectric spectrum by a distribution of Debye
relaxations

(ε(ω) − ε∞)/�ε =
∫ ∞

−∞
D(ln τ )

1

1 + iωτ
d ln τ, (B.3)

and to fit the shape of the distribution D(ln τ ) rather than the spectral shape directly. The
following form has been suggested for the distribution function [71]:

D(ln τ ) = N exp (−β/α(τ/τ0)
α) (τ/τ0)

β

(

1 +
(

τσ

τ0

)γ−β
)

, (B.4)

where N is a normalization factor. The function above is known as the extended generalized
gamma distribution, GGE. The last term (and the parameters γ and σ ) describes a high-
frequency wing, corresponding to a change from one power law behaviour (−β) to another
(−γ ). This term can therefore be omitted if no wing is observed in the spectrum. This results
in a simpler distribution, the generalized gamma distribution (GG) whose shape is described by
two parameters: α determines the width and β gives the exponent of the high-frequency power
law. The low frequency is always a power law with exponent one.

Finally, it is possible to describe the spectra phenomenologically in terms of the full width
at half maximum, usually normalized to the full width at half maximum of a Debye peak [29]
(W/WD, with WD = 1.14 decade), and by the exponent of the power law describing the high-
frequency side. The power law exponent is not always well defined, as there can be a high-
frequency wing or a secondary process appearing at high frequencies. Olsen et al [72] therefore
suggest characterizing the alpha peak by the minimal slope found in a double-logarithmic plot
of the dielectric loss as a function of frequency. Note that this phenomenological description
requires two parameters to describe the shape, while the commonly used CD and the KWW
functions use only one parameter to describe the spectrum.

In figure B.1 we show one of the dielectric spectra of m-toluidine along with fits to the
functions described above. The minimal slope is −0.44 and W/WD = 1.56. The best fits
to the different functions are displayed in figure B.1. The CD fit gives βCD = 0.42, which
with the Lindsey–Patterson scheme [68] corresponds to βKWW ≈ 0.55. The direct fit with
the Fourier transform of the KWW gives βKWW = 0.57. The best AAC fit gives α = 0.85,
leading to γ = 0.61 and βKWW ≈ (γ α)1/1.23 = 0.59. This shows that both the Patterson
and the AAC approximations reasonably well reproduce the βKWW value found from using
KWW directly. Another point worth noticing is that the βKWW value does not correspond to
the actual high-frequency slope of the experimental data in a log–log plot. This is because
the overall agreement between the fit and the data is much more governed by the width of the
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Figure B.1. Log–log plot of the dielectric loss of m-toluidine at T = 216.4 K and 122 MPa along
with best fits to several common functional forms. (a) The fitting functions from the bottom up: CD,
KWW, AAC. (b) From the bottom up: HN, gamma distribution, generalized gamma distribution.
CD, KWW and AAC have one parameter characterizing the shape, HN and gamma have two and
generalized gamma has been fitted using three adjustable parameters. The dashed line shows the
gamma distribution corresponding to the generalized gamma distribution. The curves are displaced
along the y axis by regular amounts.

relaxation function than by its high-frequency slope, as is also clearly seen for the KWW fit in
figure B.1. Note that the AAC approximation for the relation between the HN parameters and
βKWW only holds when the HN parameters are fixed according to γ = 1 − 0.812(1 − α)0.387.
The original HN function has two adjustable parameters to describe the shape. The best HN
fit gives α = 0.95 and γ = 0.46. The gamma distribution which also has two free parameters
gives α = 40 and β = 0.49. Finally we have fitted with the GGE using the constraint β = 3γ

(see [73]), meaning that the function has three free parameters to describe the shape, the values
being α = 40, β = 0.7, σ = 53 and γ = β/3 = 0.23. It is not surprising that the GGE with
three free parameters gives by far the best fit. However it is also striking that the CD with only
one parameter describing the shape gives a good fit over the whole peak, whereas this is not
true for the KWW or for the AAC.

From the above we conclude that the CD function gives a good description of the shape of
the relaxation using only one parameter to describe the shape. We therefore use this function
to fit our data. The KWW exponent, βKWW, does not give a proper measure of the high-
frequency slope, but it does give a reasonable one-parameter measure of the overall shape
of the dispersion. The KWW function is moreover the function most commonly used in the
literature, which is the main reason for using it in the discussion (section 6).
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[23] Schug K U, King H E and Böhmer R 1998 Fragility under pressure: diamond anvil cell viscometry of ortho-
terphenyl and salol J. Chem. Phys. 109 1472

[24] Granato A V 2002 The specific heat of simple liquids J. Non-Cryst. Solids 307 376–86
[25] Dyre J C and Olsen N B 2004 Landscape equivalent of the shoving model Phys. Rev. E 69 042501
[26] Kivelson D and Tarjus G 1998 SuperArrhenius character of supercooled glass-forming liquids J. Non-Cryst.

Solids 235 86
[27] Sekula M, Pawlus S, Hensel-bielowka S, Ziolo J, Paluch M and Roland C M 2004 Structural and secondary

relaxations in supercooled di-n-butyl phthalate and diisobutyl phthalate at elevated pressure J. Phys. Chem. B
108 4997–5003

[28] Fujimori H, Oguni M and Alba-Simionesco C 1997 Pressure effect as referred to the temperature effect on
irreversible structural relaxations in liquid dibutylphthalate Prog. Theor. Phys. Suppl. 126 235–8

[29] Dixon P K, Wu L, Nagel S R, Williams B D and Carini J P 1990 Scaling in the relaxation of supercooled liquids
Phys. Rev. Lett. 65 1108–11

[30] Bridgman P W 1932 Volume–temperature–pressure relations for several non-volatile liquids Proc. Am. Acad.
Arts Sci. 67 1–27

[31] Cook R L, Herbst C A and King H E 1993 High-pressure viscosity of glass-forming liquids measured by the
centrifugal force diamond anvil cell viscometer J. Phys. Chem. 97 2355–61

[32] Terminassian L, Bouzar K and Alba C 1988 Thermodynamic properties of liquid toluene J. Phys. Chem.
92 487–93

[33] Paluch M, Sekula M, Pawlus S, Rzoska S J, Ziolo J and Roland C M 2003 Test of the Einstein–Debye relation in
supercooled dibutylphthalate at pressures up to 1.4 GPa Phys. Rev. Lett. 90 175702

23

http://dx.doi.org/10.1103/PhysRevLett.71.2062
http://dx.doi.org/10.1016/S0022-3093(00)00238-6
http://dx.doi.org/10.1126/science.1089446
http://dx.doi.org/10.1038/nature02947
http://dx.doi.org/10.1103/RevModPhys.78.953
http://dx.doi.org/10.1063/1.476348
http://dx.doi.org/10.1063/1.1452724
http://dx.doi.org/10.1063/1.1649732
http://dx.doi.org/10.1103/PhysRevE.69.062501
http://dx.doi.org/10.1088/0034-4885/68/6/R03
http://dx.doi.org/10.1140/epjb/e2004-00386-3
http://dx.doi.org/10.1103/PhysRevB.72.094204
http://dx.doi.org/10.1063/1.2170074
http://dx.doi.org/10.1021/jp053439s
http://dx.doi.org/10.1103/PhysRevB.74.024205
http://dx.doi.org/10.1063/1.477514
http://dx.doi.org/10.1209/epl/i1998-00339-6
http://dx.doi.org/10.1063/1.477448
http://dx.doi.org/10.1016/j.jnoncrysol.2006.05.037
http://dx.doi.org/10.1063/1.476715
http://dx.doi.org/10.1016/S0022-3093(02)01498-9
http://dx.doi.org/10.1103/PhysRevE.69.042501
http://dx.doi.org/10.1016/S0022-3093(98)00631-0
http://dx.doi.org/10.1021/jp0376121
http://dx.doi.org/10.1103/PhysRevLett.65.1108
http://dx.doi.org/10.1021/j100112a041
http://dx.doi.org/10.1021/j100313a048
http://dx.doi.org/10.1103/PhysRevLett.90.175702


J. Phys.: Condens. Matter 19 (2007) 076102 K Niss et al

[34] Roland C M, Bair S and Casalini R 2006 Thermodynamic scaling of the viscosity of van der Waals, H-bonded,
and ionic liquids J. Chem. Phys. 125 124508

[35] Nielsen A, Cristensen T, Olsen N B and Dyre J C 2006 unpublished data
[36] Mandanici A, Cutroni M and Richert R 2005 Dynamics of glassy and liquid m-toluidine investigated by high-

resolution dielectric spectroscopy J. Chem. Phys. 122 084508
[37] Alba-Simionesco C, Fan J and Angell C A 1999 Thermodynamic aspects of the glass transition phenomenon. II.

Molecular liquids with variable interactions J. Chem. Phys. 110 5262–72
[38] Alba-Simionesco C, Fujimori H, Morineau D and Frick B 1997 A study of the glass transition of molecular

liquids as a function of pressure and temperature Prog. Theor. Phys. Suppl. 126 229–33
[39] Chauty-Cailliaux A 2003 Thermodynamique, structure, et dynamique de polymeres amporphes sous pression a

l’appoche de la transition vitreuse PhD Thesis Universite Paris XI
[40] Würflinger A, private communication data
[41] Alba-Simionesco C, Cailliaux A, Alegria A and Tarjus G 2004 Scaling out the density dependence of the a

relaxation in glass-forming polymers Europhys. Lett. 68 58–64
[42] Dixon P K and Nagel S R 1988 Frequency-dependent specific-heat and thermal-conductivity at the glass-

transition in ortho-terphenyl mixtures Phys. Rev. Lett. 61 341–4
[43] Huang D H and Mckenna G B 2001 New insights into the fragility dilemma in liquids J. Chem. Phys.

114 5621–30
[44] Paluch M, Ngai K L and Hensel-bielowka S 2001 Pressure and temperature dependences of the relaxation

dynamics of cresolphthalein-dimethylether: evidence of contributions from thermodynamics and molecular
interactions J. Chem. Phys. 114 10872–83

[45] Tölle A 2001 Neutron scattering studies of the model glass former ortho-terphenyl Rep. Prog. Phys. 64 1473–532
[46] Qin Q and McKenna G B 2006 Correlation between dynamic fragility and glass transition temperature for

different classes of glass forming liquids J. Non-Cryst. Solids 352 2977–85
[47] Richert R, Duvvuri K and Duong L T 2003 Dynamics of glass-forming liquids. VII. Dielectric relaxation of

supercooled tris-naphthylbenzene, squalane, and decahydroisoquinoline J. Chem. Phys. 118 1828
[48] Casalini R and Roland C M 2005 Scaling of the supercooled dynamics and its relation to the pressure dependences

of the dynamic crossover and the fragility of glass formers Phys. Rev. B 71 014210
[49] Casalini R and Roland C M 2005 Temperature and density effects on the local segmental and global chain

dynamics of poly(oxybutylene) Macromolecules 38 1779–88
[50] Hensel-bielowka S, Ziolo J, Paluch M and Roland C M 2002 The effect of pressure on the structural and

secondary relaxations in 1,1′-bis (p-methoxyphenyl) cyclohexane J. Chem. Phys. 117 2317–23
[51] Casalini R, Paluch M and Roland C M 2003 Influence of molecular structure on the dynamics of supercooled van

der Waals liquids Phys. Rev. E 67 031505
[52] Roland C M, Paluch M, Pakula T and Casalini R 2004 Volume and temperature as control parameters for the

dielectric a relaxation of polymers and molecular glass formers Phil. Mag. 84 1573–81
[53] Paluch M, Roland C M, Gapinski J and Patkowski A 2003 Pressure and temperature dependence of structural

relaxation in diglycidylether of bisphenol a J. Chem. Phys. 118 3177–86
[54] Roland C M and Casalini R 2003 Temperature dependence of local segmental motion in polystyrene and its

variation with molecular weight J. Chem. Phys. 119 1838–42
[55] Casalini R, McGrath K J and Roland C M 2006 Isobaric and isochoric properties of decahydroisoquinoline an

extremly fragile glass former J. Non-Cryst. Solids 352 4905–9
[56] Barlow A J, Lamb J and Matheson A J 1966 Viscous behaviour of supercooled liquids Proc. R. Soc. A 292 322
[57] Bridgman P W 1949 Viscosities to 30 000 kg/cm2 Proc. Am. Chem. Soc. 77 129
[58] Niss K, Dalle-Ferrier C and Alba-Simionesco C 2006 unpublished data
[59] Laughlin W T and Uhlmann D R 1972 Viscous flow in simple organic liquids J. Phys. Chem. 76 2317
[60] Sidebottom D L and Sorensen C M 1989 Light-scattering study of the glass-transition in salol Phys. Rev. B

40 461–6
[61] Birge N O 1986 Specific-heat spectroscopy of glycerol and propylene-glycol near the glass-transition Phys. Rev.

B 34 1631–42
[62] Ngai K L and Rendell R W 1990 Comparison between frequency-dependent specific-heat and dielectric-

relaxation of glycerol and propylene-glycol Phys. Rev. B 41 754–6
[63] Ngai K L, Rendell R W and Plazek D J 1991 Couplings between the cooperatively rearranging regions of the

Adam–Gibbs theory of relaxations in glass-forming liquids J. Chem. Phys. 94 3018–29
[64] Cutroni M, Migliardo P, Piccolo P A and Alba-Simionesco C 1994 The dynamic glass-transition of a fragile

molecular liquid in the megahertz domain J. Phys.: Condens. Matter 6 5283–93
[65] Hensel-bielowka S, Paluch M and Ngai K L 2005 Emergence of the genuine Johari–Goldstein secondary

relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature
and pressure J. Chem. Phys. 123 014502

24

http://dx.doi.org/10.1063/1.2346679
http://dx.doi.org/10.1063/1.1854628
http://dx.doi.org/10.1063/1.478800
http://dx.doi.org/10.1209/epl/i2004-10214-6
http://dx.doi.org/10.1103/PhysRevLett.61.341
http://dx.doi.org/10.1063/1.1348029
http://dx.doi.org/10.1063/1.1374556
http://dx.doi.org/10.1088/0034-4885/64/11/203
http://dx.doi.org/10.1063/1.1531587
http://dx.doi.org/10.1103/PhysRevB.71.014210
http://dx.doi.org/10.1021/ma0476902
http://dx.doi.org/10.1063/1.1488593
http://dx.doi.org/10.1103/PhysRevE.67.031505
http://dx.doi.org/10.1080/14786430310001644350
http://dx.doi.org/10.1063/1.1538597
http://dx.doi.org/10.1063/1.1581850
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.151
http://dx.doi.org/10.1021/j100660a023
http://dx.doi.org/10.1103/PhysRevB.40.461
http://dx.doi.org/10.1103/PhysRevB.34.1631
http://dx.doi.org/10.1103/PhysRevB.41.754
http://dx.doi.org/10.1063/1.459825
http://dx.doi.org/10.1088/0953-8984/6/28/006
http://dx.doi.org/10.1063/1.1946752


J. Phys.: Condens. Matter 19 (2007) 076102 K Niss et al

[66] Plazek D J and Ngai K L 1991 Correlation of polymer segmental chain dynamics with temperature-dependent
time-scale shifts Macromolecules 24 1222–4

[67] Huang D H, Colucci D M and Mckenna G B 2002 Dynamic fragility in polymers: a comparison in isobaric and
isochoric conditions (vol 116, pg 3925, 2002) J. Chem. Phys. 117 7390

[68] Lindsey C P and Patterson G D 1980 Detailed comparison of the Williams–Watts and Cole–Davidson functions
J. Chem. Phys. 73 3348–57

[69] Alvarez F, Alegria A and Colmenero J 1991 Relationship between the time-domain Kohlrausch–Williams–Watts
and frequency-domain Havriliak–Negami relaxation functions Phys. Rev. B 44 7306–12

[70] Gomez D and Alegria A 2001 On the empirical functions describing the alpha-relaxation of glass-forming
systems J. Non-Cryst. Solids 287 246–51
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